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Foreword

SARS was the first new plague of the twenty-first century. Within months, it spread

worldwide from its “birthplace” in Guangdong Province, China, affecting over

8,000 people in 25 countries and territories across five continents. SARS exposed

the vulnerability of our modern globalised world to the spread of a new emerging

infection. SARS (or a similar new emerging disease) could neither have spread so

rapidly nor had such a great global impact even 50 years ago, and arguably, it was

itself a product of our global inter-connectedness. Increasing affluence and a

demand for wild-game as exotic food led to the development of large trade of

live animal and game animal markets where many species of wild and domestic

animals were co-housed, providing the ideal opportunities for inter-species trans-

mission of viruses and other microbes. Once such a virus jumped species and

attacked humans, the increased human mobility allowed the virus the opportunity

for rapid spread. An infected patient from Guangdong who stayed for one day at a

hotel in Hong Kong led to the transmission of the disease to 16 other guests who

travelled on to seed outbreaks of the disease in Toronto, Singapore, and Vietnam, as

well as within Hong Kong itself. The virus exploited the practices used in modern

intensive care of patients with severe respiratory disease and the weakness in

infection control practices within our health care systems to cause outbreaks within

hospitals, further amplifying the spread of the disease. Health-care itself has

become a two-edged sword.

While SARS exposed the vulnerabilities of the modern human condition, it also

highlighted the global capacity for a rapid public health and scientific response to an

emerging infectious disease threat. Public health and scientific responses succeeded

in identifying the causative agent, developing diagnostic tests, and interrupting the

spread of the outbreak. The complete virus genome was fully deciphered within

weeks and in the ensuing months and years saw an outpouring of scientific research

about the disease and its causative agent, the SARS coronavirus. The natural animal

reservoir (bats) and amplifier hosts were defined, the virus receptor on human cells

identified and novel antiviral drugs and candidate vaccines developed. This resur-

gence of attention on coronaviruses led to a much better scientific understanding
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about the biology of the coronaviruses in general, the discovery of two new

coronaviruses that cause human disease (NL-63 and HKU-1) and a range of

novel coronaviruses that infect animals.

The precursor of the SARS coronavirus still persists in its natural reservoir

host and whether this precursor virus will readapt to humans at some time in the

future remains unknown. However, the human adapted SARS coronavirus

remains in laboratories and may yet escape, either inadvertently or through

malicious action. We thus need to remain vigilant to the re-emergence of a

SARS-like disease. What is certain, however, is that we will be confronted with

other emerging infectious diseases in the decade ahead and that most of these

diseases will arise from an animal reservoir. Thus, the mechanisms of the

emergence of SARS serve as an excellent case-study to better understand how

viruses jump species-barriers to cause disease outbreaks in humans. The syn-

thetic reconstruction of an infectious bat-SARS-like precursor virus, the largest

life form to be created by synthetic biology to date, has provided an excellent

model for understanding such mechanisms. This book, which includes the

current understanding of the molecular biology of SARS coronavirus and its

applications to understanding pathogenesis, host responses, inter-species trans-

mission, therapeutics and vaccine design, is therefore timely.

J.S. Malik Peiris

The University of Hong Kong and HKU-Pasteur Research Centre

Hong Kong Special Administrative Region, China
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Preface

The SARS outbreak took the whole world by surprise in November 2002. It was the

most unprecedented epidemic outbreak in recorded history and the first major new

infectious disease of this century, unusual in its high morbidity and mortality rates

and in strategically taking advantage of modern international travel to propagate

itself around the world. What followed was a global havoc created by this disease,

bringing the healthcare system of affected areas to a grinding halt, affecting

healthcare providers, disrupting scheduled emergency surgeries and vital treatment

to patients with serious conditions, overloading hospitals with infected cases,

forcing public events to be cancelled, and schools, and borders to be closed. The

economic impact on individuals and businesses was profound, downregulating

tourism, education, and employment.

The epidemic was completely different from all known traditional atypical types

of pneumonia because patients experienced lack of oxygen at the onset of the

disease and hence required the aid of modern respiratory equipment to breathe. This

syndrome was contagious enough to infect a substantial number of people widely

and easily. In our days of medical advancement and high technology, which has

subsequently led to increased life spans and longevity, a growing confidence had

emerged in mankind that it had now achieved the ability to overcome the most

complicated life-threatening situations. SARS shattered this confidence and made

us realize once again that there are hundreds of dangerous and virulent microorgan-

isms living on the other side of the border that can kill humans. What separates us

from them is only the species barrier.

This is not the first time the species barrier has been crossed. The SARS outbreak

was just another outbreak in South-East Asia, the breeding ground for notorious

viruses. The current novel H1N1 swine-flu outbreak that emerged from Mexico,

bird-flu H5N1 influenza in Hong Kong in 1996, human enterovirus 71 in Malaysia,

Taiwan, and Singapore in 1977, 1998, and 2000 respectively, and the Nipah virus in

Malaysia and Singapore in 1998, are all similar examples. The SARS outbreak was

a short-lived near-pandemic situation that originated in the Guangdong province of

south China in late 2002 and was efficiently contained by July 2003, with 8,096
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known infected cases and 774 deaths (a case-fatality rate of 9.6%) infecting

individuals from 37 countries worldwide (mortality by age group: below 1% for

people aged 24 or younger, 6% for those aged 25–44, 15% for those aged 45–64 and

more than 50% for those over 65). If SARS had not been fully contained, the world

would have faced a full-blown pandemic. We must not forget that SARS has not

been eradicated (e.g., smallpox). It is still present in its natural host reservoirs and

carries the threat and potential to return into the human population any time.

We were able to subvert a potentially explosive spread of the new coronavirus

(SARS-CoV) outbreak thanks toWHO’s global alert, getting together an emergency

network of 11 leading laboratories from 9 countries to investigate this new virus.

Within a short span of 1 month, these laboratories did a commendable job by

tracing the viral etiology and developing a diagnostic test. Over the years, much

has been learnt about this new SARS-CoV; however, our knowledge on the molecular

biology of SARS-CoV, its life-cycle, infection, and pathogenesis still remain

unclear. This virus is mysterious in its ways and this book looks at various molecular

aspects of this virus which help us in understanding these complexities.

Prior to the SARS outbreak, human coronaviruses were only associated with

mild diseases. SARS-related CoV became the first coronavirus to cause severe

disease in humans. In April 2003, the complete genome sequence of the SARS-CoV

was revealed. The genome contains unique 5’ and 3’ UTRs (untranslated regions)

containing higher-order structures which play essential roles in viral transcription

and replication, assisted by cellular proteins to perform RNA synthesis, a model

elegantly reviewed by Liu and Leibowitz in this book. The SARS-CoV genome

contains five major open reading frames (ORFs) that encode the replicase poly-

protein, the spike (S), envelope (E), and membrane (M) glycoproteins, and the

nucleocapsid protein (N). S binds species-specific host cell receptors and triggers a

fusion between the viral envelope and the cell membrane. Lambert’s chapter clearly

describes the basic cell biology of ACE2 and Pöhlmann’s chapter elaborates on the

S-ACE2 interface. Receptor binding and the subsequent structural changes that

result have been described in detail by Beniac and Booth. The S protein is the

virulence factor in many different coronaviruses and the principal viral antigen that

elicits neutralizing antibody on behalf of the host. To study this, Chow’s lab has

undertaken whole transcriptome analysis of S transfected host cells and identified

novel pathways that become altered. Replicase proteins have been extensively

discussed in the chapters by Ziebuhr and Canard. Immediate early proteins, like

the RNA dependent RNA polymerase (RDRP) and proteases, are responsible for

preparing the infected cell for virus takeover. Dinman describes programmed -1

ribosomal frameshifting as an essential and unique feature of the virus for the

translation of these proteins. The overlapping polyproteins 1a and 1ab are exten-

sively cleaved by the internally encoded SARS-CoV proteases, Mpro, and PLpro

and are extensively discussed by Chang in his chapter. The N protein forms the

capsid and also plays several regulatory roles during viral pathogenesis which have

been described by Surjit and myself. Cell type specific apoptosis induction of host

cells by viral proteins has been elegantly described by Hermann Schätzl et al. Three

chapters are dedicated to describe the current knowledge on accessory proteins by
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Pekosz, Sun, and Tan. Sheahan and Baric’s chapter and Li and Xu’s chapter

describe exhaustively the pathogenesis and protective immunity against SARS-

CoV in humans. Cell signaling and associated lung fibrosis due to TGF-/Smad

pathways are discussed in the chapters by Mizutani and Chen, respectively. The

importance and application of retroviral pseudotypes for highly pathogenic diseases

like SARS, using surrogates of the live virus for neutralization assays, has been

described by Nigel Temperton.

I wish to congratulate and thank all the contributing authors for the exhaustive

coverage of their respective subjects and publication of this book. We hope the

readers find this book a consolidated compilation of our current understanding of

the molecular biology of SARS-CoV.

International Centre for Genetic Sunil K. Lal

Engineering & Biotechnology,

New Delhi
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Chapter 1

Cellular Entry of the SARS Coronavirus:
Implications for Transmission, Pathogenicity
and Antiviral Strategies

Ilona Glowacka, Stephanie Bertram, and Stefan Pöhlmann

Abstract A novel coronavirus was identified as the causative agent of the lung

disease severe acute respiratory syndrome (SARS). The outbreak of SARS in 2002/

2003 was associated with high morbidity and mortality and sparked international

research efforts to develop antiviral strategies. Many of these efforts focussed on

the viral surface protein spike (S), which facilitates the first indispensable step in the

viral replication cycle, infectious entry into target cells. For infectious cellular entry

to occur, the S protein must engage a cellular receptor, the carboxypeptidase

angiotensin-converting enzyme 2 (ACE2). The interface between ACE2 and S

protein, which has been characterized at the structural level, constitutes a key target

for vaccines and inhibitors, and is believed to be an important determinant of viral

pathogenesis and interspecies transmission. In this chapter, we will discuss how

SARS-S mediates cellular entry and we will review the implications of this process

for SARS coronavirus (SARS-CoV) transmission, disease development and anti-

viral intervention.

1.1 Introduction

The emergence of the severe acute respiratory syndrome coronavirus (SARS-CoV)

in Guangdong Province, China, in 2002, and its subsequent spread in Asia and

Canada clearly exemplified the vulnerability of societies and economies to a novel,

highly pathogenic respiratory agent (Stadler et al. 2003; Peiris et al. 2003b). The

outbreak, which was halted solely by the quarantine of exposed individuals and the

use of conventional prevention measures such as surgical masks, was paralleled by

an international, collaborative scientific effort to develop means for therapeutic and

S. Pöhlmann (*)

Institute of Virology, OE 5230, Hannover Medical School, Carl-Neuberg-Straße 1, 30625

Hannover, Germany

e-mail: poehlmann.stefan@mh-hannover.de

S.K. Lal (ed.), Molecular Biology of the SARS-Coronavirus,
DOI 10.1007/978-3-642-03683-5_1, # Springer-Verlag Berlin Heidelberg 2010
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preventive intervention (Peiris et al. 2004; Stadler and Rappuoli 2005). The basis

for the development of successful antiviral strategies is a thorough understanding of

the molecular biology underlying viral amplification and pathogenesis, and many

significant discoveries have been made in the SARS field since the identification of

the virus early in 2003 (Drosten et al. 2003; Ksiazek et al. 2003; Peiris et al. 2003a).

Several of these findings provided important insights into the structure and function

of the viral spike (S) protein, which is used by the virus as the key to bind and enter

host cells (Hofmann and Pöhlmann 2004). The most well-known examples are the

identification of angiotensin-converting enzyme 2 (ACE2) as the host factor which

is engaged by the viral S protein for infectious entry into cells, and the elucidation

of the structure of the S protein receptor binding domain (RBD) in complex with

ACE2 (Li et al. 2003, 2005a). These findings have major implications not only for

vaccine and inhibitor development but also for our understanding of the SARS

zoonosis, since adaptation of SARS-S to robust usage of human ACE2 was proba-

bly of key importance for efficient SARS-CoV spread in humans (Li et al. 2005a,

2005c). In this chapter, we will discuss how SARS-CoV gains access to target cells

and how this process can be inhibited. In addition, we will review how the

molecular interactions underlying SARS-CoV entry impact viral pathogenesis

and interspecies transmission.

1.2 The Spike Protein: Key to the Host Cell

The SARS-Sprotein is a type I transmembrane protein, which comprises 1,255 amino

acids and contains 23 consensus signals for N-linked glycosylation (Hofmann and

Pöhlmann 2004). S protein is synthesized in the secretory pathway of infected cells.

It contains an N-terminal signal sequence, which mediates import of the nascent

protein into the endoplasmatic reticulum, where the protein is folded and modified

with mannose-rich carbohydrates. Upon transport of the protein into the Golgi

apparatus, most, if not all, of the high-mannose carbohydrates are processed into

complex glycans (Nal et al. 2005). Evidence of O-glycosylation of SARS-S has not

been reported. A novel dibasic ER retrieval motif in the cytoplasmic tail of SARS-S

promotes accumulation of the S protein at the ER–Golgi intermediate compartment

and the Golgi region (McBride et al. 2007), the sites where progeny particles are

assembled (Stertz et al. 2007; Siu et al. 2008). Formation and budding of new

particles are driven by the membrane protein (M), the envelope protein (E) and the

nucleocapsid protein (N) (Huang et al. 2004; Hsieh et al. 2005; Siu et al. 2008);

interactions with the M protein might facilitate S protein incorporation into parti-

cles. Trimers of the S protein protrude from the viral envelope and provide virions

with a crown (Lat. corona) -like appearance, from which the name “coronaviruses”

is derived.

The domain organization of SARS-S resembles that of several well-characterized

viral membrane proteins, such as influenza virus hemagglutinin (HA) and human

immunodeficiency virus (HIV) envelope protein (Env) (Hofmann andPöhlmann 2004).

4 I. Glowacka et al.



These proteins employ comparable strategies to facilitate fusion of viral and host

cell membranes and are termed class I fusion proteins (Kielian and Rey 2006).

They are distinguished from class II fusion proteins (Kielian 2006), found, for

example, on flavi- and alphaviruses, by their distinct spatial organization and the

particular configuration of the functional elements required for fusion with target

cells: class I fusion proteins are inserted perpendicular to the viral membrane and

contain an N-terminal surface unit (SU) and a C-terminal transmembrane unit

(TM). The globular SU interacts with cellular receptors, while the TM promotes

1b1aleader S

3a

E

7a

N

SARS-CoV

3b
8b

9b

hCoV-229E

hCoV-NL63

hCoV-OC43

MHV

AIBV

Influenza-HA

HIV-gp160

Cytoplasmic tail

Transmembrane domain

HR2

HR1

S2

Receptor-binding

S1

Signal peptide

Fusion peptide

M 6 8a

7b

Fig. 1.1 Domain organization of coronavirus S proteins (adapted from Hofmann and Pöhlmann

2004). The position of the S protein open reading frame in the SARS-CoV genome is indicated in

the upper panel. Coronavirus S proteins exhibit a domain organization characteristic for class I

fusion proteins. The domain organization of prototype class I fusion proteins, the HIV envelope

protein, and the influenza virus HA is shown below. A signal peptide is located at the N terminus

and mediates import of the nascent protein into the secretory pathway of infected cells. The surface

unit S1 contains a receptor binding domain (RBD), which allows engagement of cellular receptors

for infectious entry. The transmembrane unit (S2) harbors functional elements pivotal to mem-

brane fusion: a fusion peptide, two helical regions, and a transmembrane domain. Proteolytic

cleavage into the S1 and S2 subunits by host-cell proteases is indicated by a triangular arrow.
AIBV: avian infectious bronchitis virus; hCoV: human CoV; HR: helical region; MHV: murine

hepatitis virus; SARS: severe acute respiratory syndrome
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